Kiel Nano, Surface and Interface Science (KiNSIS)

Biomagnetic Sensing and Processing – Progress Using a Modular Approach, Dr. Tilmann Sander-Thömmes (PTB, Berlin)

23.04.2018 ab 17:15

Technische Fakultät, Gebäude D, Kaisterstraße 2, Aquarium

Open Talk of the CRC 1261 "Magnetoelectric Sensors: From Composite Materials to Biomagnetic Diagnostics"

In the field of biomagnetism the application of mathematical algorithms has been as important as the hardware itself. Traditionally, the hardware (the sensor Array) was based on superconducting quantum interference devices (SQUIDs) and operated for decades without large modifications. In contrast to that the range of relevant mathematical algorithms increased at a steady pace. This was driven by factors such as an ever increasing PC based computing power, new physiological insights motivating the application of existing algorithms, and the development of new algorithms to test biophysical models among others.

After around three decades of SQUID based Hardware, now new magnetic field sensors with the potential to replace or complement SQUIDs are available or under development. The opportunity for new sensors is the consequence of clinical challenges unsolved by state-of-the art SQUID based systems and due to new technology allowing alternative quantum physics based sensors in a small sized housing. These new sensors often have extra capabilities compared with SQUIDs and naturally some disadvantages. I will illustrate the modular approach using the example of optically pumped magnetometers and the signal processing toolbox FieldTrip.

Short biography
Tilmann Sander-Thömmes studied Physics at University of Freiburg and ETH Zürich and graduated there in 1992. He continued to obtain a PhD in solid-state physics at Imperial College in London. Following two post-docs in Berlin he has been working at Physikalisch-Technische Bundesanstalt since 2000 in the laboratory for Biosignals. Since 1998 he is involved with measuring and analysing magnetic brain signals. He is an expert in magnetoencephalography using both SQUIDs and more recently optically pumped magnetometers.


Diesen Termin meinem iCal-Kalender hinzufügen






« Februar 2019 »
Mo Di Mi Do Fr Sa So
28 29
  • 17:00: Thiometallate - Vom Precursor zum Material (Felix Danker, CAU)
  • Klicken Sie, um Details zu allen 1 Terminen zu sehen.
30 31 1 2 3
  • 17:15: tba
  • 17:15: Power supply for wireless sensors systems (Prof. Dr. Leonhard M. Reindl, Albert-Ludwigs-Universität Freiburg)
  • Klicken Sie, um Details zu allen 2 Terminen zu sehen.
  • 16:00: Synthesis and Properties of Heterostructures with Designed Nanoarchitecture (Prof. Dr. Dave C. Johnson, University of Oregon)
  • 16:15: PD Dr. Horst Fichtner (Ruhr-Universität Bochum)
  • 17:00: Transition metal complexes for surface deposition and photoswitchable Self - Assembled Monolayers (Alexander Schlimm, CAU)
  • Klicken Sie, um Details zu allen 3 Terminen zu sehen.
6 7
  • 16:00: „Topics in circuit design for biomedical sensing“, Antrittsvorlesung von Prof. Dr. Robert Rieger (Elektrotechnik)
  • Klicken Sie, um Details zu allen 1 Terminen zu sehen.
8 9 10
  • 10:00: „Modellierung und Simulation von Materialien im Großen und im Kleinen“, Antrittsvorlesung von Prof. Dr. Stephan Wulfinghoff (Materialwissenschaft)
  • 17:15: "From Davis’ law to modern mechanobiology: how mechanics governs growth of soft biological tissues (Prof. Dr.-Ing. Christian J. Cyron, TU Hamburg)
  • Klicken Sie, um Details zu allen 2 Terminen zu sehen.
12 13 14
  • 17:00: tba, Prof. Dr. Paulo Freitas (International Iberian Nanotechnology Laboratory, Braga, Portugal)
  • Klicken Sie, um Details zu allen 1 Terminen zu sehen.
15 16 17
  • 17:15: tba
  • Klicken Sie, um Details zu allen 1 Terminen zu sehen.
  • ganztägig: Prof. Dr. Friedrich Aumayr (TU Wien)
  • Klicken Sie, um Details zu allen 1 Terminen zu sehen.
20 21 22 23 24
25 26 27 28 1 2 3