Organic and bio-organic electronic devices

Niyazi Serdar Sariciftci

Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz, Austria
homepage: http://www.lios.at
e-mail: serdar.sariciftci@jku.at

Abstract:

Organic electronic devices are maturing from the academic research into the industrial development, entering the markets. In order to account for a sustainable future, the application of biodegradable and biocompatible systems for organic optoelectronics are needed. The use of cheap electronic devices in a large scale will introduce a “consumable electronics” into the market of “consumer electronics”. Therefore environmentally friendly materials are important to use. This is a next great challenge to material science in organic electronics. New developments of bio-inspired and/or bio-origin, bio-compatible materials are interesting. Such materials can also be used to interface the biological and biomedical research with the organic electronics field.

Last but not least the conversion of CO$_2$ to methane (or other synthetic fuels) using solar energy is an important step to make an efficient, large scale energy storage. At the same time this will make a cyclic and sustainable CO$_2$ economy. We report organic as well as bio-organic catalysts which can be used in photo-electro-catalytic conversion devices. Such bio-catalysts can be enzymes as well as living bacteria immobilized on electrodes. Selectivity of such bio-catalysts is very high and combined with the room temperature operation of such bio-electro-catalytic systems makes them industrially highly attractive.